Metabolism of F18, a Derivative of Calanolide A, in Human Liver Microsomes and Cytosol
نویسندگان
چکیده
10-Chloromethyl-11-demethyl-12-oxo-calanolide (F18), an analog of calanolide A, is a novel potent nonnucleoside reverse transcriptase inhibitor against HIV-1. Here, we report the metabolic profile and the results of associated biochemical studies of F18 in vitro and in vivo. The metabolites of F18 were identified based on liquid chromatography-electrospray ionization mass spectrometry and/or nuclear magnetic resonance. Twenty-three metabolites of F18 were observed in liver microsomes in vitro. The metabolism of F18 involved 4-propyl chain oxidation, 10-chloromethyl oxidative dechlorination and 12-carbonyl reduction. Three metabolites (M1, M3-1, and M3-2) were also found in rat blood after oral administration of F18 and the reduction metabolites M3-1 and M3-2 were found to exhibit high potency for the inhibition of HIV-1 in vitro. The oxidative metabolism of F18 was mainly catalyzed by cytochrome P450 3A4 in human microsomes, whereas flavin-containing monooxygenases and 11β-hydroxysteroid dehydrogenase were found to be involved in its carbonyl reduction. In human cytosol, multiple carbonyl reductases, including aldo-keto reductase 1C, short-chain dehydrogenases/reductases and quinone oxidoreductase 1, were demonstrated to be responsible for F18 carbonyl reduction. In conclusion, the in vitro metabolism of F18 involves multiple drug metabolizing enzymes, and several metabolites exhibited anti-HIV-1 activities. Notably, the described results provide the first demonstration of the capability of FMOs for carbonyl reduction.
منابع مشابه
MICROSOME-MEDIATED BENZO[A]PYRENE-DNA BINDING AND INHIBITION BY CYTOSOLIC FRACTIONS FROM LIVER AND SKIN OF ADULT AND WEANLING RATS
Biotransformation of benzo[a]pyrene (BaP) in the presence of microsomal fractions derived from liver and epiderm of adult and weanling rats was examined. The aim of this study was to evaluate the effect of age on the capacity of two organs in transformation of BaP. Subcellular fractions were prepared from skin and liver by ultracentrifugation and were used as the source of BaP metabolizing enzy...
متن کاملBioactivation of capecitabine in human liver: involvement of the cytosolic enzyme on 5'-deoxy-5-fluorocytidine formation.
Capecitabine, an anticancer prodrug, is thought to be biotransformed into active 5-fluorouracil (5-FU) by three enzymes. After oral administration, capecitabine is first metabolized to 5'-deoxy-5-fluorocytidine (5'-DFCR) by carboxylesterase (CES), then 5'-DFCR is converted to 5'-deoxy-5-fluorouridine (5'-DFUR) by cytidine deaminase. 5'-DFUR is activated to 5-FU by thymidine phosphorylase. Altho...
متن کاملEpoxide hydrolase-dependent metabolism of butadiene monoxide to 3-butene-1,2-diol in mouse, rat, and human liver.
Incubations of butadiene monoxide (BMO) with mouse, rat, and human liver microsomes or cDNA-expressed human microsomal epoxide hydrolase led to 3-buten-1,2-diol (BDD) detection; the BDD peak exhibited a GC/MS fragmentation pattern similar to that of reference material. Incubations with rat liver cytosol did not lead to BDD detection; however, when mouse or human liver cytosol was used, BDD was ...
متن کاملMetabolic activation and DNA adduct formation of Benzo(a) pyrene by adult and newborn rat skin and liver microsomes
Benzo(a) pyrene is a carcinigen polycyclic aromatic hydrocarbon which diffuses into the environment from combustion of organic meterials.based on various epidemiological evidences it is related to lung,skin and liver cancer.mutagenicity,and immunosuppressivety are among important biological effects of Benzo(a) pyrene.after absorbtion and distribution in the body,it undergoes epoxidation by cyto...
متن کاملGlucuronidation and sulfation of the tea flavonoid (-)-epicatechin by the human and rat enzymes.
(-)-Epicatechin (EC) is one of the flavonoids present in green tea, suggested to have chemopreventive properties in cancer. However, its bioavailability is not clearly understood. In the present study, we determined the metabolism of EC, focusing on its glucuronic acid and sulfate conjugation using human liver and intestinal microsomes and cytosol as well as recombinant UDP-glucuronosyltransfer...
متن کامل